=========================preview======================
(PHYS223)PHYS223MD.pdf
Back to PHYS223 Login to download
======================================================
-
-
e}
fl1y f} j / 411)
fI1{j--fVit1 ~soill/ . ..-...
u_.m------' ,"..-l
~
!hId -kv-WJ V--T I
~~l~f;;j~~---~
I. A charge distribution p(r) generates the following field -.1.
E =-L.-";
~1IW.rl -=-~-:-J:::=---f.Vr1f.? e~"r+---~ ~-=-I--:-
where b is a col18!8nt. What is the charge density per) in space? What is the total
charge over the entire space? Remember to check your answer with Gauss law.
(20 points) -=-:--~ -----;..~ 4<fr:?7e-~~Tl,(nckT--b ,=1---. 1'--"-'-3~1'-br' q.b e-br._
'--~'-=' .-~S.(-rJ~._.~ 4-7((1. --
2. Find the electric field E and electric potential V inside and outside a sphere of radi us R which camea a charge density invenely proportional to the squared .
_.. 3~~b -br .-
distance crom the origin, p(r)=A:/,.J, where k is a constant, in addition to a point
charge q at the center. What is the total charge in the sphere? What is the total +----=-~7 -4'IC y2. e -
..
~.
energy stored in the system? Use infinity as the potentialrefercnce point. (25
points)
3. Two semi-infinite grounded conducting planes meet at an angle of 60.. In the
region between them, there is a point charge q, situated as shown. Set up the --.
~=--~~~~==_. ===t==
image charge configuration, and calculate the potential in the region. What is the
force acting on this charge by the induced charges on the two conducting planes?
(25 points)
--. ~-tdt -~f' ~2.e bry'SmOJ.n1o-r1:rp
-
-=i-=-tbf e-brol-f. .-..
._--
q ~~~1
y
-
--~--
.--. ._-
4. A specified charge density 0(9)=00+3 e.,cos9 is glued over the surface of a -.-. spherical shell of mdius R. Note, your boundary condition at the spherical shell is -
-
not given by the potential itself. Rather, the given charge density can relate the
potential and its derivatives inside and outside the spherical surface. (30 points) -._.
(a)
Write down the ajJpropriate Partial Differential
Equations for the potential inside and outside ~ -.
the sphere;
.-.-.
(b)
Write down all the boundary conditions; fI
(c)
Solve the boundary condition problem in the .
appropriate coordinatea system for the
potential; _.
(d) Findtheelectricfieldinsideandoutsidethe
sphere. . --._.
.-
'--. .
"
--.,.:,.
~
.
.
.
,, 4J----QL ------T---
-lnu._-.--'-' "' nu_"--
~~5phMt r;;.R. +-----
-.: .()
--i.E -'AA -
~-=I . R. -s: (~
-~~_=*",:r~f,R --
H ~----L ' ---~ t--. ... ..
( i L~=~~~~~~~~~+-
-.. . _~n_-'(fi-1--=<t>:r' E=+. ~~---.._~ \ ,--'=-~l~
--' ..
---~-=--=f-rI~r1-'-rl4itdr tJ4iliJd~J~~ ~----L----F----~,r _4<~r -!, ~ .-....
-0 0 0 L~ , Jf\==-f ('T)J
.. ....
..
-_-!-__\Y ~J?-_CiI__------
4:iLRR-
+ If ---------------.-
fo t.
" '-------------------.-----
,---,-=~--J-( + --
~8~~?_f)!Y~~~~t-
-~--E k RM tt r -------
,,C fr1 4-7f:fc=1T ------
r2 4-7(k R
0 ---------
--------.---.. --n ------
------.-' ""-----
~-V~~t -----------~--.J -_un --
r kR. I ft-.1.1.~--
f
-~J t. r~ <Rr.f.ytJ(AI