=========================preview======================
(MATH113)[2010](f)quiz~2407^_10452.pdf
Back to MATH113 Login to download
======================================================
MATH 113 Introduction to Linear Algebra Name: Quiz 1 for T6a
Student ID: Time allowed: 20 minutes
1. Find the inverse of the following matrix:
110 0
01 .10
00 1 .1
000 1
A =
.
2. Suppose that B is an n n matrix satisfying (B2 + In)(B2 . In)= O. Show that B.1 = B3 and simplify B9 .
END
1. Perform row operations on [ A | I4 ]: 110 0
1000 1100
1000
.
.
.
.
...
01 .10
0100
00 1 .1
0010
...
r4+r3
.
...
01 .10
0100
00 1 0
0011
...
000 1
0001 0001
0001
.
.
.
.
1100
1000 1000
1 .1 .1 .1
r3+r2
.
...
0100
0111
0010
0011
...
.r2+r1
.
...
0100
01 11
0010
00 11
...
0001
0001 0001
00 01
Hence the inverse of A is:
.
.
...
1 .1 .1 .1
01 1 1
00 1 1
00 0 1
...
A.1
=
.
2. By direct expansion, we have (B2 + In)(B2 . In)= B4 . In = O. So B B3 = In and hence B.1 = B3
. Then
B9 = B8 B =(B4)2 B = In B = B.
MATH 113 Introduction to Linear Algebra Name: Quiz 1 for T6b
Student ID: Time allowed: 20 minutes
1. Find the inverse of the following matrix:
1 .100
01 .10
00 11
00 01
A =
.
2. Suppose that B is an n n matrix satisfying In + B + B2 = O. Show that B.1 = B2 and simplify B10 .
END
1. Perform row operations on [ A | I4 ]: 1 .100
1000
.
.
.
.
1 .100
100 0
...
01 .10
0100
00 11
0010
...
.r4+r3
.
...
01 .10
010 0
00 10
001 .1
...
00 01
0001 00 01
000 1
.
.
.
.
1 .100
100 0 1000
111 .1
r3+r2
.
...
0 1 00
011 .1
0 0 10
001 .1
...
r2+r1
.
...
0100
011 .1
0010
001 .1
...
0 0 01
000 1 0001
000 1
Hence the inverse of A is:
.
.
...
111 .1
011 .1
001 .1
000 1
...
A.1
=
.
2. Since In + B + B2 = O . B(.In . B)= In, so: B.1
= .In . B = .In . B +(In + B + B2)= B2 . Then B3 = B2 B = B.1 B = In and: B10 =(B3)3 B = In B = B.