=========================preview======================
(ELEC317)2002_midtermSol.pdf
Back to ELEC317 Login to download
======================================================
ELEC 317 Mid-term Test Suggested Solution (Fall 2002)
1. (10%) Linear Time Invariant System
(a)
(5%)
Linear: e.g. displacement = radius x angle
Time-invariant: e.g. There is no difference to measure the displacement of the bicycle for different days (e.g. yesterday / today)
(b)
(5%)
Not linear: e.g. Moving forward and backward of the bicycle (displacement will not move backward)
Not time-invariant: e.g. displacement due to the damage of the old bicycle (different from the new bicycle)
2. (10%) Random Variable Transformation
FY(y) = P(Y<= y) = P(FX(x) <=y) = P(X <= FX-1(y)) (as FX(x) is one-to-one (non-decreasing)) = FX(FX-1(y)) =y
Since Y can only takes value in [0,1] and FY(y) = y,
Y is uniformly distributed in [0,1].
3. (20%) Eigenvalues and Eigenvector 3.(a)(5%)
Eigenvalues:
det (A -I) = 0
det(
det(
......
1 3 1
2
0
.
.
.
.
) = 0
..
..
..
2
.
..
32 .
2 . 3. 4 = 0 (. 4)(+1) = 0 1 = 4,2 =.1 Eigenvectors:
When =4, Ax = x
1 3
3
then 2x2 = 3x1
. .....
2
.
.
.
.
.
x
1
x
1
= 4
..
..
..
..
..
2
x x
2 2
x + 2x = 4x
121
x + 2x = 4x
12 2
2
.
.
.
v
1
a
=
..
..
3
,where a is constant
Normalized eigenvector:
2
.
1
v1 =
.
.
..
..
3
13
When =-1,
Ax = x
. .....
1 3
3
then x2 =.x1
2
.
.
.
.
.
x
1
x
1
= (.1)
..
..
..
..
..
2
x x
2 2
x + 2x =.x
12 1
x + 2x =.x
12 2
1
.
.
.
v
a
=
2
..
1
,where a is constant
Normalized eigenvector:
..
.
1
.
1
v2 =
.
. ..
1
..
.
2 . 2
.
A.1
A-1x = x/ (=.1
)
4
..
. 31
..
Eigenvalues: The eigenvalues of A-1 is the reciprocal of the eigenvalues of A. 1=1/4 2=-1
Normalized eigenvectors: 1
..
2
1
1
1
.
.
.
.
.
.
v1
v2
=
=
..
..
..
,
3
.
13
2
3 (c) (5%) A = E E-1
10
. ..
]
21
.
[v
.
[v12 ] 1
v v
=
..
1 2
0 2
. 1 . 1
.
.
.
. . . ..
. . . ..
,
E
.1
=
.
26
5
. . . ..
13
2
2
2
E
=
(
)
. 32
3 . 1
13
13
13
2
21
11
.
.
.
.
. . . ..
. . . ..
. . . ..
. . . ..
40
26
13
2
2
2
3 . 2
.
. ..
1
(
)
=
..
3 .1
0 .
5
13
13
13
2
2 .1
11
.
.
.
.
. . . ..
. . . ..
. . . ..
. . . ..
40
26
13
2
2
2
. 32
.
. ..
1(or = (
)
)
..
31
0 .
5
13
13
13
2
Using the property EE-1 = E-1E = I,
A100
= AAA A = (EE-1) (EE-1) (EE-1) =E100 E-1
21
11
.
.
.
.
. . . ..
4100 0
.
.
13
2
2
2
3 . 2
3 .1
01
.
. . . ..
2 .1
11
.
4100 0
26
2
2
(or = (
)
..
..
31
. 32
5
01
. . . ..
13
13
13
2
3 (d) (5%)