=========================preview======================
(ELEC2600)[2013](s)midterm~htang^_12993.pdf
Back to ELEC2600 Login to download
======================================================
ELECC210 Springg 2011 Midteerm Answerr Sheet
Sectioon bbcbd
Sectioon Q1. ..
a) P[3. X. 6] =P[X=4 or 5 or 6] ==
..= .
.
= .[... .. . ... .] .
P[1.X. 6|X.2]=PP[X=3or 44 or 5|X.2] .[...] = ......=...b)) The cdf of XX
.X)
.XX.)
3.X.
kp..
.....
.
.E.
)X..
k)
...X
=
c) E
E
..
. = 4.375
..
=
...
)=
=EX
)
.
.
)
= .... =
therefore t
.
[.
.
D
P
=
]
d))
7
hhe conditionaal3
4
5
i
isted as folllows,
.
.,
K 1 1 1 1 1
PP...|.) 3 6 112 4 6
e)) The probabbility of Y
Y 13 26 34 43
PP...) 16 16 16 16
.
E.Y) = .... , E.Y)
=
.9961
=
,
pmf of Xss l6
7
.....
D.Y) E.Y) .E.YY)
. = ...00
.. ...=
Q2.
a)) Total probaability is equual to 1, thereefore we havve the area u nder the funnction f.x) is 1.
.c+cc.2)1.2=1
4
Then c= 55.
....
b)) P[1.X. 3]=1. P[00.X.13.X.5]=1. 1 ..5.33) =
.. ...
..
x, 0.x. 2
..
.
c) The functioon f.x) =., 2 . x . 5, therefoore
.
00, otherwisse
0, ..0
.
, 0...
.
1
.
1
6
..1 +
2
.
1
1.
4..
F.X)
=
.), 2...55..
4
1,
d))
Expectatio
.
)X.
.
.
.
. ..
.+ ....
.
).
E
..
.
.
.
.
.. ..
..
..
....
.+ .... . =....
..
+
=
=
==
..
.
)
=E
).E.
E
X
.
.
.
..
..
.
..
..
.= .....
.
.
...
... ..
..
..
..
.+ .... = ...
. ..
..
..
.
.
.
+
+
=
==
=
.
)P[X. 1] .
.
..
)
1.
)X.
D
X
X
= ...
.. ........=1.
=
1.4983
.
.
P[
]
e))
11
...
= ....
2....1,.2.
154, 2....5
.........
0,
==
=
.x|A)
f
. .
.
.
==
Q3.
a)) 0.9 0.7 0.5 = 0.3155
b) 0.90.7=0.63 c) Let us define the event get the $100 as A and the event answer the question 2incorrectly as B, then
.
P[A]=1. [A]=1.0.315=0.685 P=0.9 .1.0.7)
.
[.].
A [.
= .
..
]]
.
, therefore P[A]
$P[$] = 2.7 + 6.3 + 31.5 = 40.5
P
[
=
B]
P
= 0.27
0.27
0.685 = 0.3942
.
[
P
]
[AA
.
P[B|A]Since B is a subcase of A.
=
[
]
.
=P
.
d) The probability of $
$....
[$] .$
=]$[E
$..
Q4.
a) ...... = ...
... ...b) ...
... ...
Vo
P
0 10 20 100
0.1 0.27 0.315 0.315
...
...+......=...
... ......for Ce
[
c) P
=
2]
for C2
te
Vo
[
= 0.2
|A group]P[A group] +P[Vote for C2|B group]P[B group]
+ 0.9 ..= ....
t
..
d) Accor
P
ing to Bayes Theorem in Group B|vote for C1]C1........ .0.8.
.....
d
.
........ ... ..
]
= ./...../.. = ..
[
[
= .[.. ..... . & .... ... ..]
.[.... ... ..]
0.2..... ....0.9.....
=
...[
]=
e) P
.
. 0.1
...
.
.